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Using a suitable Peetre functional that weighs dilTerently the behaviour of the
function in the middle of the interval and near the endpoints, we obtain estimates of
the Jackson type on the rate of monotone polynomial approximation to a
monotone continuous function. These estimates involve the second modulus of
smoothness related to the Peetre functional. Then we apply these estimates to get
estimates on the degree of eomonotone polynomial approximation of a piecewise
monotone function and on the degree of copositive polynomial approximation of a
continuous function that changes sign finitely often in the interval.'" 1988 AcademiC

Pre». Inc:.

I. INTRODUCTION AND MAIN RESULTS

Jackson type estimates for the approximation of montone functions
f E ek

[ -I, I] by monotone polynomials have been known for more than
a decade. These estimates are due to Lorentz and Zeller [10] for k = 0, to
Lorentz [9] for k = I, and to DeVore [2] for k ~ 2, and can be sum­
marized as follows. For each k ~ 0 and every monotone nondecreasing
f E ek

[ -1, I] there are nondecreasing polynomials Pn of degree not
exceeding n such that

( I )

where C is an absolute constant independent off and n, and ill is the usual
modulus of continuity ofPk

).

If a function f E C[ - 1, 1] is piecewise monotone, i.e., changes
monotonicity finitely many times in [ -I, I], we say that a polynomial Pn
is comonotone with f if Pn is piecewise monotone and changes its
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2 D. LEVIATAN

monotonicity exactly where f does. Estimates of the form (1) on com­
onotone approximation are known only for k = 0 (Newman [11 J and lliev
[7 J) and for k = 1 (Beatson and Leviatan [1 J). It should be stressed that
the constant C here depends on the number of changes of monotonicity off
but not on the location of these changes.

Recently DeVore and Yu [3J gave a constructive proof of some
pointwise estimates of the Timan-Teljakovski type for monotone
polynomial approximation. Specifically they proved that for a nondecreas­
ing f E C[ -1, 1J there are nondecreasing polynomials Pn for which

-1~x~1. (2)

Here again C is an absolute constant independent of f and n.
In the sequel, unless specifically stated otherwise, C denotes an absolute

constant not necessarily the same on each occurrence even if it appears
more than once in the same equation or inequality.

While estimate (2) is the proper one for obtaining inverse theorems in
polynomial approximation and indeed is applied in [3 J to characterize
nondecreasing functions in Lip* IX, 0 < IX < 2, by mean of the order of
monotone polynomial approximation, there are increasing functions
strictly in Lip IX, 0 < IX < 1, whose order of non constrained approximation
is better than the one guaranteed by (l) or (2). For instance, if 0 < IX < 1
and f(x) = (l + xtl2 -1, -1 ~ x < 0, and f(x) = 1- (1- x)aI2, 0 ~ x ~ 1,
thenfis approximable at the rate of n a while (1) and (2) (except near the
endpoints) yield n- a12. Our estimates below guarantee the rate n - a in this
case. Thus the rate of monotone approximation to the above f(x) is n - a.

We shall apply some of the ideas in [3J and obtain estimates involving a
suitable Peetre functional, namely, for f E C[ -1, 1J let

(3)

where the infimum is taken over all functions g E C1
[ -1, 1J such that g' is

locally absolutely continuous in [ -1,1 J and (1- x 2
) g"(x) E L",,[ -1,1].

Our main result on monotone approximation is

THEOREM 1. There exists an absolute constant C such that for every
f E C[ -1, 1J monotone nondecreasing and every n ~ 1 there is a nondecreas­
ing polynomial of degree ~n such that

II f - Pn II ~ CK2(f, lin). (4)

Evidently Theorem 1 yields global estimates on the degree of monotone
approximation by polynomials, hence (4) is different from (2).
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Nevertheless, the K-functional intrinsically involves 1- x 2
, thus taking into

account the distance to the endpoints of the interval.
Indeed Ditzian [4, 5] shows that this K-functional is equivalent to a

suitable modulus of smoothness, which again takes into account the dis­
tance to the endpoints of the interval. Namely, let <p(x) = J!=? and
define

W'f(f, t)= sup IILl~'P(x)f(x)llw,
O~h~1

where

LI ~'P(x) f(x) = f(x - h<p(x» - 2f(x) + f(x + h<p(x»,

=0,

x±h<p(x)E[-l,l]

otherwise.

Then Ditzian ([4, Theorem 3.1] or [5, Theorem A]) proved that

Therefore we can rewrite Theorem 1 in a somewhat more familiar form.

THEOREM I'. Let f E C[ -1, 1] be nondecreasing in [- 1, 1]. Then for
each n ~ 1 there is a nondecreasing polynomial Pn such that

Ilf - Pn II w ~ CW'f(f, lin). (4')

It should be noted that Ditzian [5, Theorem 3.1] proves a similar
estimate for nonconstrained polynomial approximation. Furthermore, in a
yet unpublished result Ditzian and Totik [6] obtain inverse theorems
relating w'f and the rate of polynomial approximation, thus enabling one to
retrieve information on w'f(f, .) from the degree of polynomial
approximation to f

The author is indebted to Z. Ditzian for discussing with him those
unpublished results.

Similar to the above one can define, for f E C[ -1, 1],

K 1(f, t) = inf{ II f - gil w + t IIJ!=?g'(x)11 oo}, (5)

where the infimum is taken over all g E C[ -1, 1] which are locally
absolutely continuous in [-1,1] and J!=?g'(X)EL oo [-I,I].
Equivalently, for f E C[ -1, 1] let

w'P(f, t) = sup IILlh'P(x)f(x)11 w
O~h~1
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with <p(x)=~, where
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Ah'P(xJ(x) =f(x-~ <P(X)) - f(x+~ <P(X)}

=0,

It is not difficult to see that w~(f, t) ~ Cw'P(f, t).
Again by [5, Theorem A] we have

otherwise.

Now it is readily seen that for fECi [ -1, 1],

Hence w~(f, t) ~ tw'P(f', 2t) ~ Ctw'P(f', t).
Thus an immediate consequence of Theorem I is

(6)

COROLLARY 2. Let fECi [ -I, I] be nondecreasing in [-I, I]. Then
for each n ~ 1 there is a nondecreasing polynomial Pn such that

II f - Pn II ~ Cn-1w'P(f', n- 1).

In fact we will show a little more, namely,

(7)

THEOREM 3. Let fECi [ -1, 1] be nondecreasing in [-1, 1]. Then for
each n ~ 1, there is a nondecreasing polynomial Pn such that (7) holds and

(8)

This will enable us to extend the result to piecewise monotone functions.
To this end we have

THEOREM 4. Let f E CJ[ -1, 1], j =° or 1, have r ~ 1 changes of
monotonicity in [-1, 1] and let IX be the point of change of monotonicity
closest to the endpoints. Then for each n ~ 1 there is a polynomial Pn
comonotone with f such that

(9)

and if j = 1 also

(10)

Here Cr(lX) is an absolute constant depending on r and IX but is otherwise
independent off and of n. In fact Cr(lX) ~ Cr/<p(IX)'.
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Last, an immediate consequence of Theorem 4 is an estimate on the
approximation of f E C[ -1, 1] which changes its sign finitely many times
in [-1, 1] by means of polynomials Pn which are copositive with f on
[ -1, 1], i.e., f(x) Pn(x) ~ 0, -1:::;; x:::;; 1. (Compare with [8].)

COROLLARY 5. Let f E C[ -1, 1] have r changes in sign in [ -1, 1] and
let IX be the point of change of sign closest to the endpoints. Then for each
n ~ 1, there is a polynomial copositive with f such that

(11 )

2. MONOTONE POLYNOMIAL ApPROXIMATION

Following [3] we approximatefby a piecewise linear function Sn which
interpolates f at certain points -1 = ~ -n < ~ -n + 1 < ... < ~n = 1, to be
described later. Thus in [~j' ~j+ I], Sn has the slope

.=f(~j+d-f(~J=f[!'·!'· ]
s; !'. _!,. <';'<';+1 ,

<';+ 1 <';
j=n, ... , n-1,

n-I

Sn(x) = f( -1) +Ln(l + x) + L (Sj - Sj_ d cpix ).
j=-n+1

Now it follows by Newton's formula that

where the square brackes denote the divided difference off at ~j' x, ~j + I'

The choice of the ~/s is made in the following way. Let In(t) denote the
Jackson kernel

(
sin nt/2)8

In(t) = An sin t/2 '

and define

j = 0, 1, ..., 2n,

where tj = jn/2n, j = 0, 1, ..., 2n. Note that in particular T == °and T2n == 1.
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Now for x = cos t let rj(x) = Tn~ j(t) and define

j= -n, ..., n.

Note again that in particular R ~n(x) = 1+ x and Rn(x) == O. The points ~j

are defined by the equations (see [3])

and since Rj - RJ+ 1 is nonnegative and increasing in [ -1, 1] we get -1 =
~-n<~-n+l < ... <~n=1.

We shall see that Rj(x) is a sufficiently good approximation to lpix) =
(x-~j)+ to guarantee estimates (4) and (8).

Define the operator Ln by

n-I
L n(f)=/(-1)+L nR-n + L (sj-sj_d Rj

j=-n+1
n-I

=/(-1)+ L SiRj-Rj+d
j= -n

and it follows that Ln(f) is nondecreasing in [- 1, 1] if1 is. Also it was
shown by DeVore and Yu [3] that IILnl1 (n~ 1) are uniformly bounded
(11L n II is the operator norm of L n : C[ -1, 1] ~ [ -1, 1]).

In the course of our proof we need the following information on the
location of the ~;s (see [3]).

LEMMA A. Let bj = (sin tn_ j)/n + 1/n2
, j = -n, ..., n. Then we have

(i) cobj ~~j_1 -~j ~CI bj,j= -n, ..., n-1,

(ii) Co bj ~ bj+1 ~ C1 bj, j = -n, ..., n - 1.

(iii) For any ~j ~U~~j+I' -n+ 1~j~n-2,

~
~j+ 1 - ~j ~ C •

n
Last, put

dit) = max{1; n dist(t, {tj , - tJ)},

then DeVore and Yu [3, (2.12)(ii)] showed that for x = cos t, 0 ~ t ~ n, we
have

x # ~j' j = - n, ..., n - 1. (13)

We prove the following lemma (compare with [3, (2.12)(i)]).
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LEMMA 6. For j = - n + 1, ..., n - 1, x = cos t, 0::::; t::::; n, we have

sin tn - j (d )) 5Icp)x) - R)x)1 ::::; C n_;(t -.n .

Proof Start with

cp)x)-R)x) =r [cp;(y)-R;(y)]dy
-1

=r[cp;(y) - R;(y)] dy
x

since cp) ±1) = R) ±1), j = - n + 1, ..., n - 1.
If t ~ tn _}, then using the left equality in (15) and (13) we get

::::; Cr sin u(dn_)u))-7 duo
t

7

(14 )

(15)

Now sinu::::;sintn_}+lu-tn_}1 and the prooffollows by the inequality
[3, (2.14)(ii)], for k=O, 1,

r lu - t} Ik (diu)) -7 du::::; Cn -k - l(di t )) -5,

t

and the observation that sin tn_}~ sin t 1 ~ lin. If t < tn_} we use the right
equality in (15) and proceed in a similar way.

We are ready now to state and prove a special case of Theorem 1 where f
is twice differentiable.

THEOREM 7. Let f' E C[ -1, 1] be locally absolutely continuous and
assume I(1 - x 2

) f" (x )I ::::; M a.e. in [ - 1, 1]. Then for each n ~ 1 we have

(16)

Proof We will estimate Ilf-Snil and IISn-Ln(f)II. By (12), for
~}::::;X::::;~j+l'
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Now
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f(t) = f(~j) + (t - U f'(~j) +r(t - u) + j"(u) du,
~J

which implies for ~j ~ x ~ ¢j + I that

1 [fxu-~ f~J+l~.+I-U ]f[¢j, x, ~j+ IJ = ¢ _ ~ . _ )f"(u) du + ¢J _ j"(u) du .
J+ I J ~J X 'oj x J+ 1 X

Hence for ¢j ~ x ~ ¢j+ 1

If(x)-Sn(x)1 ~~. l_~[r (u-¢j)(~j+1 -x) 1j"(u)1 du
J+ I .I ~j

f
~j+ 1 ]+ x (¢j+1 -u)(x-U 1j"(u)1 du

1 f~j+ 1

~ ¢ _ ~ (u - ¢j)( ~j + I - u) I j" (u)I duoJ+ I .I ~J

If -n + 1~ j ~ n - 2 it follows by Lemma A(iii) that

C f~}+1 1 - u2

I f(x) - Sn(x)1 ~ ¢i+ I _ ¢j ~j ~ I j"(u)1 du

~CM/n2. (17)

For j = -n or j = n - 1 we have by virtue of Lemma A(iii) that

1+u 1-u2

(u-~-n)(¢_n+l-u)~C(1+u)Ln~C-2-~C--2 ' -l~u~¢_n+1
n n

and again (17) holds. Thus

(18 )

and we have to estimate

n-I

Sn(x)-Ln(f)(x)= L (Sj-Sj_l)(q>ix)-Rix )).
j~ -n + 1
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By Lemma 1 and the readily seen estimate
n-I

L (dn _i t ))-5=O(1),
j=-n+1

it suffices to show that

9

-n+ 1~j~n-1. (19)

To this end note that, as above, we have

ISj -sj_11 = If[~j-I' ~j' ~j+ IJI (~j+ 1 - ~j)

~t u __~]-I If"(u)1 du
~j-I ~J ~J-I

+t+ 1

~j+ 1~ u I f"(u)1 duo (20)
~j ~j+ 1 ~j

By virtue of Lemma A, ifj~n-2 and ~j~U~~j+I' then

sintn _ j ~
----'---"-~ bj ~ C(~j+ 1 -~) ~ C~--

n n

~
~j+l-u~C .

n

If j = n - 1 and ~n _ 1 ~ U ~ 1, then

sin t 1 sin(n/2n) C--- ~-
n - n '" n2

and finally ifj= -n+ 1, -1 ~U~Cn+I' then

sin t 2n _ 1 sin(n/2n) C
---= ~2

n n n

u - ~ -n = 1+ u ~ 1- u2
•

(21 )

(22)

(23 )

(24)
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Plugging (21) through (24) in (20) we have

sin tn j C f~J 1- UZ
Isj-si-ll - <~ _~ . -z-If"(u)1 du

n j j_ 1 1+ I n

C f~J+I1-UZ
+ ~ _ ~ -z-I f"(u)1 du <CMln

z
.

j + J j ~I n

This proves (19) and implies

which together with (18) proves (16) and concludes our proof.

We are ready to prove Theorem 1.

Proof of Theorem 1. By (3) there eixsts a function gE C1[ -1,1] such
that g' is locally absolutely continuous and (1 - X Z ) g" (x) E L ce [ - 1, 1],
which satisfies

Ilf-gilce < Kz(f, lin)

11(1-xZ
) g"(x)llce <nzKz(f, lin).

Then by (16) and (26)

II f - Ln(f)ll ce < II f - gil ce + II g - Ln(g)11 ce + IILn(f - g)11 ce

<(1 + IILnII) II f - gil ce + CKz(f, lin)

and since IILn II is uniformly bounded we get by (25) that

Ilf - Ln(f)ll 00 <CKz{f, lin).

(25)

(26)

It was remarked already that if f is nondecreasing so is Ln(f), which is a
polynomial of degree not exceeding 4n, so our proof is complete.

3. COMONOTONE POLYNOMIAL ApPROXIMAnON

We begin this section by proving Theorem 3, which provides
simultaneously monotone approximation to f and approximation to 1'.
This control over the rate of approximation to I' will enable us to obtain
the estimates on the comonotone approximation following the ideas of
Beatson and the author [1].
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Proof of Theorem 3. We only need to prove that for a nondecreasing
fECI [ - 1, 1],

II f' - LAf)'11 CD ~ Cw"'(f', lin).

To this end observe that we are done once we prove the following

PROPOSITION 8. For f E C[ -1, 1], let

1 f~j+ 1

Sj=~. _~ . f(u)du,
j+ 1 j ~J

and define

-n~j~n-1

n~l

L~(f)(x)=S_n+ L (Sj-Sj~dR;(x).
j~~n+l

Then

II f - L~(f) II CD ~ CK1(f, lin).

Proof Put S~(x) = Sj for ~j < x < ~j+ 1, j = -n, ..., n - 1. Then

n~l

S~(X)=Ln+ L (Sj-Sj~I)<P;(X), xi'~j,j=-n, ...,n-1.
j=~n+l

(27)

Assume first that f is locally absolutely continuous and that
I~ f'(x)1 ~M a.e. in [-1,1]. We will show that

and

Ilf-S~IICD ~CMln

IIS~ - L~(f)ll CD ~ CMln.

(28 )

(29)

Since this is done in much the same way as in proving (16) we will omit the
details. Just observe that for ~j < x < ~j+ 1

1 f~}+ 1

f(x)-S~(x)=f(x)- f(~j)-~. _~. [f(u)- f(~j)] du
j+ 1 j ~j

f
x 1 f~}+l

= f'(u)du-~. _~ (~j+l-u)f'(u)du
~J j + 1 j ~j

=~. l_~[r(U-~)f'(U)dU
j + I j ~j

f
~}+J ]

- x (~j+l -u)f'(u)du ,
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so that
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If(x)-S~(x)l:( C_ r+ 1~
ej+l ej ~I n

x I f'(u)1 du:( CM/n

and (28) follows. And for x i= ej , j = -n, ..., n - 1,

n-l
IS~(x)-L~(f)(x)l:( L ISj-Sj_lllq>;(x)-R;(x)l.

j~-n+l

Now by virtue of (13) and the easy estimate

n-l
L (dn _/t))-7=O(1),

j~-n+l

it suffices to show that

Is; - sj_ll :( CM/n.

But

1 f~J+ I
Sj-Sj_l = _ f(u)duej + I ej ~J

1 f~j
- _ . f(u) duej ej - 1 ~J-l

1 f~]+ 1

= i'. _ i'. [f(u)- f(e j)] du
SJ + 1 SJ ~j

1 f~J
+ ej - ej-l ~j-l [f(eJ - f(u)] du

1 f~j+ 1
=i' _i' (ej+1-u)f'(u)du

SJ+ 1 SJ ~J

1 f~j+ i'_i' . (u-ej_df'(u)du.
SJ SJ - 1 ~J-I

Hence

C f~j+l~
ISj-Sj-ll:(e -e 1f'(u)ldu

j+ 1 j ~J n

C f0~+ _. If'(u)\ du:( CM/n.
ej ej-l ~J-l n

(30)

(31)
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This proves (31) and completes the proof of (29). Thus

II f - L~(f)11 00 ~ CMln.

13

(32)

We will prove now that IIL~ II is uniformly bounded. Let f E C[ -1, 1].
Then

IL~(f)(x)1 ~ IS~(x)1 + IL~f(x) - S~(x)l, x =J ~j j = -n, ..., n - 1.

Now Isjl ~ II f II 00' so it follows by (13) and (30) that

n-l

IL~(f)(x)1 ~ II f II 00 + 2 II f II 00 L Icp'(x) - R;(x)1
j=-n+\

n-\

~llflloo+Cllflloo I (dn _ j (tW- 7

j~-n+\

~ C II f 1100·

Continuity of L~(f) now assures

IIL~(f)11 00 ~ C II f II 00·

To complete the proof let g E C[ -1, 1] be such that )1 - x 2 g'(x) E

L oo [ -1,1] and

Then

II f - gil 00 ~ K\(f, lin)

II~ g'(x)11 ~nK\(f, lin).

(33 )

(34)

II f - L~(f)11 00 ~ II f - gil 00 + Ilg - L~(g)11 00 + IIL~(f - g)11 00

~ (1 + IIL~II) II f - gil 00 + II g - Ln(g)11 00

~ CK\(f, lin)

by (32) through (34) and the uniform boundedness of IIL~ II.

Proof of Theorem 4. First observe that when estimatingf(x) - fly) by
means of w'P(f, Itl) we are looking for t so that u - (tI2) cp(u) = x and
u + (t12) cp(u) = y. Thus u = (x + y)/2 and

tcp(u)=y-x

or

Itl=ly-xl.
cp(u)
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Now
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2 J (Y+X)2qJ(u)=~= 1- -2-

_ j2-(y+x)j2+ y+x
- 2

=! J(1- x) + (1- y) j(1 + x) + (1 + y)

~! max {qJ(x), qJ(Y)}.

We will prove the case j = 1, the case j = 0 being similar. For small n, say
n ~ N(r) (r the number of changes of monotonicity), the estimate is trivial.
For let ex be the point of change closest to the endpoints of the interval,
then f'(ex) = 0 and so the constant polynomial Pn -= I(ex) approximates I as
required because

I/(x)- l(ex)1 = Ix-exllf'(~)1

=lx-exll/'(O-f'(ex)1

:0:::: 2w'" (I' 2 I~ - ex l)
" 'qJ(ex)

~ 2w'" (I', qJ~ex))

(by virtue of (6))

Also

If'(x)-Ol = If'(x)- f'(ex)1

~ Cr(ex) w"'(f', lin).

So we have to prove the theorem for n > N(r) and we do it by induction on
.r (the number of monotonicity changes ). For r = 0 this is Theorem 3, so let
us assume (9) and (10) for functions with r - 1~ 0 changes of
monotonicity and n ~ N(r - 1) and prove we have them for I having r
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changes of monotonicity. Given such anfwith rJ. the point of change closest
to the endpoints, we may assume f( rJ.) = 0 (otherwise subtract a constant).
Define the "flipped" function

](x) = f(x),

= - f(x), x<rJ.. (35)

Then] E C1
[ -1, 1] and has only r - I changes of monotonicity. We will

show that

(36)

and by the induction hypothesis there is a polynomial Pn comonotone with
land satisfying (9) and (10). We therefore proceed as in the paper by Beat­
son and the author [1, proof of the lemma], where the only difference is
that rJ. plays the role of zero there and for Ix - rJ.1 < kin we have the
inequalities

11'(x)1 = I]'(x) -1'(rJ.)1

~ '" (fA, 2 IX-rJ.I)
'" W , q>(rJ.)

k (A 1)~C--w'" f',-
q>( rJ.) n

and

1](x)1 = I](x)- ](rJ.)1

= IX-rJ.II]'(~)1

k
2 1 (A 1)~C---w<P f',- .

n q>( rJ.) n

Thus as in [1] we construct a polynomial P 2n which is comonotone with f
and satisfies (9) and (10). We complete the proof by showing the validity of
(36). In fact, by virtue of (6) it suffices to prove that for f E C[ - 1, 1] with
f(rJ.)=O and] given by (35) we have

K I (], t) ~ CK1(f, t).

To this end let g E C[ -1, 1] be locally absolutely continuous and such
that

II f - gil 00 + t 11J1=? g'(x)11 00 ~ 2K1(f, t).

640/53/1-2
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Then we may assume without loss of generality that g(a) = O. (For Ig(a)1 ~

2K1(f, t), thus taking gl = g- g(a) will do with the right-hand side being
CK1(f, t).)

Now gE C[ -1, 1] and is locally absolutely continuous. Also

II J- gil 00 = II f - gil 00

and

II~ f(x)lloo =II~ g'(x)IIcIO'

Hence

This concludes our proof.
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