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Using a suitable Peetre functional that weighs differently the behaviour of the
function in the middle of the interval and near the endpoints, we obtain estimates of
the Jackson type on the rate of monotone polynomial approximation to a
monotone continuous function. These estimates involve the second modulus of
smoothness related to the Peetre functional. Then we apply these estimates to get
estimates on the degree of comonotone polynomial approximation of a piecewise
monotone function and on the degree of copositive polynomial approximation of a
continuous function that changes sign finitely often in the interval. i 1988 Academic

Press, Inc.

I. INTRODUCTION AND MAIN RESULTS

Jackson type estimates for the approximation of montone functions
fe€C*[—1, 1] by monotone polynomials have been known for more than
a decade. These estimates are due to Lorentz and Zeller {10] for k=0, to
Lorentz [9] for k=1, and to DeVore [2] for k>2, and can be sum-
marized as follows. For each k20 and every monotone nondecreasing
SeC*[—1,1] there are nondecreasing polynomials p, of degree not
exceeding n such that

If = Palle < Cn~ (S, 1/n), (1)

where C is an absolute constant independent of /' and », and w is the usual
modulus of continuity of /%),

If a function feC[—1,1] is piecewise monotone, ie., changes
monotonicity finitely many times in [ —1, 1], we say that a polynomial p,
is comonotonc with f if p, is piccewisc monotone and changes its
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monotonicity exactly where f does. Estimates of the form (1) on com-
onotone approximation are known only for k=0 (Newman [11] and Iliev
[7]) and for k=1 (Beatson and Leviatan [1]). It should be stressed that
the constant C here depends on the number of changes of monotonicity of
but not on the location of these changes.

Recently DeVore and Yu [3] gave a constructive proof of some
pointwise estimates of the Timan-Teljakovski type for monotone
polynomial approximation. Specifically they proved that for a nondecreas-
ing f € C[—1, 1] there are nondecreasing polynomials p, for which

1f(x) = pu(X)| < Cary(f, /1 =x*n), —1<x<1 (2)

Here again C is an absolute constant independent of f and ».

In the sequel, unless specifically stated otherwise, C denotes an absolute
constant not necessarily the same on each occurrence even if it appears
more than once in the same equation or inequality.

While estimate (2) is the proper one for obtaining inverse theorems in
polynomial approximation and indeed is applied in [3] to characterize
nondecreasing functions in Lip*«, 0 <a <2, by mean of the order of
monotone polynomial approximation, there are increasing functions
strictly in Lip o, 0 <a < 1, whose order of non constrained approximation
is better than the one guaranteed by (1) or (2). For instance, if 0 <a <1
and f(x)=(1+x)?—1, —1<x<0, and f(x)=1-(1—x)"* 0<x<]1,
then f'is approximable at the rate of n~* while (1) and (2) (except near the
endpoints) yield n~*?. Our estimates below guarantee the rate n~ * in this
case. Thus the rate of monotone approximation to the above f(x) is n ™=
We shall apply some of the ideas in [3] and obtain estimates involving a
suitable Peetre functional, namely, for fe C[ —1, 1] let

K(f, ) =inf{]| f~ gl + 2 (1 =x*) g"(x)] .}, (3)

where the infimum is taken over all functions ge C'[ —1, 1] such that g’ is
locally absolutely continuous in [—1,1] and (1 —x?) g"(x)e L [—1,1].
Our main result on monotone approximation is

THEOREM 1. There exists an absolute constant C such that for every
f e C[—1, 1] monotone nondecreasing and every n = 1 there is a nondecreas-
ing polynomial of degree <n such that

If—pall S CKy(f, 1/n). (4)

Evidently Theorem 1 yields global estimates on the degree of monotone
approximation by polynomials, hence (4) is different from (2).
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Nevertheless, the K-functional intrinsically involves 1 — x?, thus taking into
account the distance to the endpoints of the interval.

Indeed Ditzian [4, 5] shows that this K-functional is equivalent to a
suitable modulus of smoothness, which again takes into account the dis-
tance to the endpoints of the interval. Namely, let ¢(x)=./1—x? and
define

w?(f; t) = Sup HAi(p(x)f(x)” o oR}

O<hst
where

Ao [(x) = flx —ho(x)) = 2f(x) + f(x + ho(x)),  xtho(x)e[—1,1]

=0, otherwise.

Then Ditzian ([4, Theorem 3.1] or [5, Theorem A]) proved that

Cof(f, )< K(f, )< C,08(/, 1)
Therefore we can rewrite Theorem 1 in a somewhat more familiar form.

THEOREM 1'. Let fe C[ —1, 1] be nondecreasing in [ —1, 1]. Then for
each n 2 1 there is a nondecreasing polynomial p, such that

1f = Palls < Caf(f 1/n). 4)

It should be noted that Ditzian [5, Theorem 3.1] proves a similar
estimate for nonconstrained polynomial approximation. Furthermore, in a
yet unpublished result Ditzian and Totik [6] obtain inverse theorems
relating w¢ and the rate of polynomial approximation, thus enabling one to
retrieve information on w$(f,-) from the degree of polynomial
approximation to f.

The author is indebted to Z. Ditzian for discussing with him those
unpublished results.

Similar to the above one can define, for fe C[ -1, 1],

K(f,=inf{] f— gl +1I/1-x*g'(¥)}, (5)

where the infimum is taken over all ge C[—1,1] which are locally
absolutely continuous in [—1,1] and ./1-x*>g'(x)eL, [—1,1].
Equivalently, for fe C[—1, 1] let

0% 1)= _SUB [y ()]
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with ¢(x)=./1— x?, where
h h
Brarf =1 (x=5 00 )~ (x+30000).  x£30(mer-11]

=0, otherwise.

It is not difficult to see that wg(f, 1) < Cw®(f, t).
Again by [5, Theorem A] we have

Cio*(f, )< K (f, )< C0%(f, 1). (6)
Now it is readily seen that for fe C'[—1,1],
h
8 (3)=(x) [ Dargior /') .
Hence w$(f, 1) < tw®(f", 21) < Cto®(f", 1).

Thus an immediate consequence of Theorem 1 is

COROLLARY 2. Let fe C'[—1, 1] be nondecreasing in [ —1,1]. Then
for each n=1 there is a nondecreasing polynomial p, such that

| f—pal <Cn 'w?(f',n 1Y) (7)

In fact we will show a little more, namely,

THEOREM 3. Let fe C'[—1, 1] be nondecreasing in [ —1,1]. Then for
each n= 1, there is a nondecreasing polynomial p, such that (7) holds and

1f = Pulle < Ca®(f,n™"). (8)

This will enable us to extend the result to piecewise monotone functions.
To this end we have

THEOREM 4. Let feC/[—1,1], j=0 or 1, have r=1 changes of
monotonicity in [ —1, 1] and let o be the point of change of monotonicity
closest to the endpoints. Then for each n=1 there is a polynomial p,
comonotone with f such that

If = pall Cla) n0?(f,n™") 9)
and if j=1 also
If = pull SCla) @®(f",n 7). (10)

Here C(a) is an absolute constant depending on r and o but is otherwise
independent of f and of n. In fact C(x)< C,/p(a).
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Last, an immediate consequence of Theorem 4 is an estimate on the
approximation of f e C[ —1, 1] which changes its sign finitely many times
in [~1,1] by means of polynomials p, which are copositive with f on
[—1,17, ie, f(x) p(x) =20, —1<x< 1. (Compare with [8].)

COROLLARY 5. Let fe C[ —1,1] have r changes in sign in [ —1,1] and
let o be the point of change of sign closest to the endpoints. Then for each
n=1, there is a polynomial copositive with f such that

1f = pall Cla) @®(f,n ™). (11)

2. MONOTONE POLYNOMIAL APPROXIMATION

Following [3] we approximate f by a piecewise linear function S, which
interpolates f at certain points —1=¢_, <& _,,, <.+ <&, =1, to be
described later. Thus in [, ¢, ], S, has the slope

L)1

($) .
: = ; i+11s =n, .. —1,
J éj+1_éj f[ij’éj'f- ] J n n

and if @(x)=(x—¢;), we can write
n—1
SAX)=A=D+s_,(1+x)+ Y (5;—5_1) @)
j=—n+1
Now it follows by Newton’s formula that

S =8x)=f1&5 % & Jx=E)x=&40), &<x<gy,, (12)

where the square brackes denote the divided difference of fat ¢;, x, &, ;.
The choice of the s is made in the following way. Let J,(¢) denote the
Jackson kernel

sin nt/2
sin ¢/2

8
J,,(t)=z,,< ) [" _swa=1,

and define
+¢

(=] "Lwds j=01,.,2n,

t—t

where ¢; = jn/2n, j=0, 1, .., 2n. Note that in particular T =0 and T,, =1.
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Now for x=cos t let r(x)=T, ,(t) and define

R,(x):jx ru)ydu,  j=—n,..n.

-1

Note again that in particular R _,(x)=1+x and R,(x)=0. The points ¢,
are defined by the equations (see [3])

1-¢=R(1)

and since R; — R, is nonnegative and increasingin [ —1, 1] we get —1=
E <€ < <g =L

We shall see that R,(x) is a sufficiently good approximation to ¢,(x)=
(x—¢;), to guarantee estimates (4) and (8).

Define the operator L, by

n—1
Lf)=f(=1)+s_,R_,+ ¥ (=5 )R

j=-—n+1

=D+ T SR —Ry)

j=-—n

and it follows that L,(f) is nondecreasing in [ —1, 1] if fis. Also it was
shown by DeVore and Yu [3] that |L,|| (n>1) are uniformly bounded
(IIL, | is the operator norm of L,: C[—1,1]—=[—1,1]).

In the course of our proof we need the following information on the
location of the &/’s (see [3]).

LemMa A. Let §;=(sint,_;)/n+1/n? j= —n, .., n. Then we have
(1) Coajgf,'_l—'fj<cl5j,j=—n,...,n—l,
(i) ¢p0; <041 <6, j=~—n.,n—1
(iii) Forany {;<u<¢;,,, —n+1<j<n-2,

1—u?

$ier—&<c

Last, put
d(t)=max{1; ndist(s, {t,, —t;})},

then DeVore and Yu [3, (2.12)(ii)] showed that for x=cos ¢, 0 << n, we
have

lpj(x) = R}(x)| < Cd,_(1))"7, x#¢&,j=-n.,n—1 (13)

We prove the following lemma (compare with [3, (2.12)(i)]).
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LEMMA 6. Forj=—n+1,.,n—1, x=cost, 0<t<n, we have

sint,_;

lo(x) = R(x)| < C (d,_ (). (14)

n

Proof. Start with
ox) = R(x)=[" [0/~ Ry
= [ o - BRI 1y (15)

since @ (£1)=R(£1),j=—n+1,.,n—1
If t>1, ,, then using the left equality in (15) and (13) we get

l0,0) =R <[ I0j(y) = Ri(y)l dy
< Cf" sin u(d,_ (u))~7 du

Now sinu<sint,_;+|u—1, ;| and the proof follows by the inequality
[3, (2.14)(i1)], for k=0, 1,

f" lu—1|* ()" du< Cn—*"1(d(1) "5, <<,

and the observation that sint,_,>sint, >1/n. If t <1, _, we use the right
equality in (15) and proceed in a similar way.

We are ready now to state and prove a special case of Theorem 1 where f
is twice differentiable.

THEOREM 7. Let f'e C[—1,1] be locally absolutely continuous and
assume |(1 —x*) f"(x)| < M ae. in [~1,1]. Then for each n>1 we have

ILf = L(f)I < CM/n. (16)

Proof. We will estimate | f—S,| and |S,—L,(f)l. By (12), for
éjsxsch.n

[ f(x) = S () < TS %850 D] (e = E)E 40 — )
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Now

(0= FE)+U=E) F1EN+ [ (t—u)+ () di,

)

which implies for &, <x< ¢, that

1 *u— «fj ” éf“éj+l—u "
11 x &) =g | [ S s [ = |

X Q! x §j+1—x

Hence for ¢, <x<¢,,,

Lf(x) = S,(x)]

| =8 =0 1

j+l_

#7081

x

< 1 J‘éjﬂ é . d
Sgo=gl, Wb S )l du

If —n+1<j<n-2it follows by Lemma A(iii) that

Lf(x) = Sa(x) <

C gor 1 —u?
el M S LA CR
J+ AR

< CM/n*. (17)

For j= —n or j=n—1 we have by virtue of Lemma A(iii) that

1+u 1 —u?

(u_é——n)(éwn+l_u)<C(1+u)5—nsc nz SC‘_VIT, _lgusé—n‘#l
1—u t—u?
(u—'én l)(é _u) C(l_u)5 <C n2 gc n2 3 in;1<u<19
and again (17) holds. Thus
Il f—S,Il <CM/n?, (18)

and we have to estimate

n—1

S(x)—LA)x)=" % (5,—5; 1)@, x)— R{(x)).

Jj=-—n+1



MONOTONE POLYNOMIAL APPROXIMATIONS

By Lemma 1 and the readily seen estimate

n—1

Y (d_ (1)) °=0(1),

Jj=—n+1
it suffices to show that

sin ¢, _

|s; =84l

To this end note that, as above, we have

'sj_sj~l|= |f[£j~l’ éj» éj+l]l (éj+l "‘éj)

éj é] 1 "
<[ sl

&t

+ 2L )] du,
‘Lj C]+l é

By virtue of Lemma A, if j<n—2 and &, <u<{;, |, then

int,_, 1—u?
Mooigs, <@, —E)<CY—2
n

usC= 1—u2.

n

£j+1_

Ifj>—n+2 and éj—l Suggj’ then

sin ¢, _ 1—u
n J<C5] I\C(é —61 l)<C

u—é]AISC

Ifj=n—1and ¢, | <u<l, then

sin 7, s1n(7r/2n) E
n n n2

Eo—u=1—-u<l—u?
and finally if j= —n+1, -1<u<é_,,,, then

sin #,, 4 sm(n/2n) C

n n n

N

u—¢_,=1+u<l—u’

n” I<CMn®,  —n+1<j<n—1.

(19)

(20)

(21)

(22)

(23)

(24)
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Plugging (21) through (24) in (20) we have

sint,_; C 6 1—u?
S, —5 4| g | f"(u)| du
|3, =5, 8¢ b S (u)l
C & 1 —uz
+ | /()] du< CM/n>.
5_/+1 _51 L, n’

This proves (19) and implies
“Sn - Ln(f)“ < CM/nzs

which together with (18) proves (16) and concludes our proof.
We are ready to prove Theorem 1.

Proof of Theorem 1. By (3) there eixsts a function ge C'[ —1, 1] such
that g’ is locally absolutely continuous and (1 —x?)g"(x)eL, [—1,1],
which satisfies

I f—glle <Ks(f, 1/n) (25)
11— x%) g"(x)l.. <n*Ky(f; V). (26)

Then by (16) and (26)
=LMoo <If—8llw + 18— L&)l + ILa(f— 8N
S(HILL D IS — gl + CKL(f, 1/n)

and since | L, | is uniformly bounded we get by (25) that

IS = L.l w < CK,(f, 1/n).

It was remarked already that if f is nondecreasing so is L,(f), which is a
polynomial of degree not exceeding 4n, so our proof is complete.

3. COMONOTONE POLYNOMIAL APPROXIMATION

We begin this section by proving Theorem 3, which provides
simultaneously monotone approximation to f and approximation to f.
This control over the rate of approximation to f” will enable us to obtain
the estimates on the comonotone approximation following the ideas of
Beatson and the author [1].
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Proof of Theorem 3. We only need to prove that for a nondecreasing
f € Cl [ - 1’ 1 ]a

1/ =L.(f)ll, €C®(f, 1/n).

To this end observe that we are done once we prove the following

ProrosITION 8. For feC[—1,1], let

sj=2j+—ll_—§j ;mf(u)du, —n<j<n—1
and define
n—1
L()x)=5_n+ Y (s, —s_1) Ri(x).
Then
I f = Lu(N)l o < CK((f, 1/n). (27)

Proof. Put Sy(x)=s;for {;<x<{;,,,j=—n,.,n—1 Then

n—1
S;l(x)=s—n+ Z (sj—sjvl)(pjl'(x)7 x#éj’jz—n’ ~--an"1-

Jj=—n+1

Assume first that f is locally absolutely continuous and that
[«/1—x2 f(x)| <M ae. in [—1,1]. We will show that

I /=Sl <CM/n (28)

and
187 — L)l o < CM/n. (29)

Since this is done in much the same way as in proving (16) we will omit the
details. Just observe that for ¢, <x< ¢,

1 J+1
F6) = Sie0) = fx) = (&) ——— | L) £&)] d
£j+l _ij i
= s e = [ € w0 S ) d
g =gl M
1

TG ch (u=&,) f'(u) du

[ € a |
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so that

2

, C Gt/ —u
f=swlsg—— [

x| f'(u)] du<CM/n
and (28) follows. And for x#¢;, j=—n, .., n—1,

18(x) — L (f)(x)] < i |8 =8, 1 l@;(x) — Rj(x)].

j=—-n+1
Now by virtue of (13) and the easy estimate

n—1

Y @ _(1)T=0(1),

Jj=—-n+1
it suffices to show that
ls; —s;, | <CMjn.

But
1 j+ 1
5, =85 =fj+1 _QE f(u) du
1 g
_«fj—éj_le_lf(u)du
- [ - fE) 1 d
—éj+1_§j & u)y— j ]
1 g
R L}._l [/(&)— f(w)] du
1 st ,
=é/+1 —ij] (&1 —u) f'(u)du
1 8 |
+§J’_€j,1J‘é},il(u_éj—l)f(u)du_
Hence

€[ )

€j+l—€j &

sj_sjfllg

T,

¢ f’ v ln_ U\ o) du< CMin.
&i-1

(30)

(31)
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This proves (31) and completes the proof of (29). Thus
I f= Ly <CM/n. (32)

We will prove now that |L,| is uniformly bounded. Let fe C[—1,1].
Then

L) < IS+ IL, f(x) = Su(x)l, x#& j=—n, ..n—1.
Now [s,| < || f ||, so it follows by (13) and (30) that

n—1

LA <Nl +21 flle X 19'(x) = Ri(x)]

j=—n+1
n—1
S e +CHLf e Y (o (1)77

SCIf e
Continuity of L,(f) now assures

ILn Mo SCIS -
—

To complete the proof let ge C[—1,1] be such that \/l—xz g'(x)e
L, [—1,1] and

I f—glle <Ki(f, 1/n) (33)
I/1=x* g' () <nKy(f, 1/n). (34)

Then
N =La M <1 f—8lw + 18— Lu(&)lw + I L(f — &)l
SA+NLINISf—8lo + 18— L&)l
< CK,(f, 1/n)
by (32) through (34) and the uniform boundedness of | L, ||.

Proof of Theorem 4. First observe that when estimating f(x) — f(y) by
means of w®(f, |t|) we are looking for ¢ so that u— (¢/2) p(u)=x and
u+(t/2) p(u)=y. Thus u=(x+ y)/2 and

tp(u)=y—x
or

|y —x|

="
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Now

ou)=/1—u’= 1_<y+TX>2
_\/2—(y+x)ﬁky+x
h 2

=1 /(1—x)+(1—p) ST +x)+(1+y)

We will prove the case j=1, the case j=0 being similar. For small n, say
n < N(r) (r the number of changes of monotonicity), the estimate is trivial.
For let o be the point of change closest to the endpoints of the interval,
then () =0 and so the constant polynomial p, = f(x) approximates f as
required because

| f(x) = flo)] =[x —af | /()]
=lx—al | /(&)= f'(a)l

S 20 (f & f(;;x')

4
s 20 (f ; m)

(by virtue of (6))

no o1
<Com? (f’2>

NOY (]
<SCom™ @ (f’n>

<C(a)n 'w® (f’, i—)
Also
| f'(x)=0 = f"(x)— f'(a)]
< Cla) o®(f', 1/n).

So we have to prove the theorem for n > N(r) and we do it by induction on
.r (the number of monotonicity changes). For » =0 this is Theorem 3, so let
us assume (9) and (10) for functions with r—1>0 changes of
monotonicity and n> N(r—1) and prove we have them for f having r
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changes of monotonicity. Given such an f with « the point of change closest
to the endpoints, we may assume f(«) =0 (otherwise subtract a constant).
Define the “flipped” function

= — f(x), x<a. (35)

Then fe C'[—1,1] and has only r— 1 changes of monotonicity. We will
show that

-

w?(f', )< Co®(f', 1) (36)

and by the induction hypothesis there is a polynomial p, comonotone with
f and satisfying (9) and (10). We therefore proceed as in the paper by Beat-
son and the author [1, proof of the lemma], where the only difference is
that o plays the role of zero there and for |x—a|<k/n we have the
inequalities

-
’

|70 =11 ()= F" ()]

and

| /() =1 f(x)— f(a)|
=lx—al | /(&)
2
< L e (f’,l>.
n o(a) n
Thus as in [1] we construct a polynomial P,, which is comonotone with f
and satisfies (9) and (10). We complete the proof by showing the validity of

(36). In fact, by virtue of (6) it suffices to prove that for f e C[ —1, 1] with
f(a)=0 and £ given by (35) we have

K(f, ) S CK,(f, 1),

To this end let ge C[—1, 1] be locally absolutely continuous and such
that

1f =gl + 21/ 1% g'(x)] o <2Ki(f, 1).

640/53/1-2
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Then we may assume without loss of generality that g(x)=0. (For |g(a)| <
2K,(, t), thus taking g, = g — g(o) will do with the right-hand side being
CK,(f 1))

Now ge C[—1, 1] and is locally absolutely continuous. Also

I f= 8w =11 gl
and
IV1=22 80 = /1= 57 &'(%)] .
Hence

K(f, )< f= 8l +11/1=x2 80 . <CK\(f,1).

This concludes our proof.
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